

Current Transducer LT 1005-S/SP28

 $I_{DN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical	data
------------	------

I _{PN}	Primary nominal r.m.s. current				1000			Α	
I _P	Primary current, measuring range			0 ± 2400			Α		
\mathbf{R}_{M}	Measuring resis	easuring resistance @		$T_A = 70^{\circ}C$		$T_A = 85^{\circ}C$		5°C	
			\mathbf{R}_{Mmin}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$		R,	M min	\mathbf{R}_{Mmax}	
	with ± 15 V	@ \pm 1300 A _{max}	0	10	@ ± 1250) A 1)	0	10	Ω
		@ ± 1400 A _{max}	0	7			0	5	Ω
		@ ± 1500 A _{max}	0	4	@ ± 1450) A 1)	0	3	Ω
	with ± 24 V	@ ± 2200 A max	0	10	@ ± 2100) A 1)	3	10	Ω
		@ ± 2300 A max	0	7		;	3	5	Ω
		$@ \pm 2400 A_{max}$	0	5		;	3	3	Ω
I _{SN}	Secondary nominal r.m.s. current				200			mΑ	
K	Conversion ratio					1:50	000		
V _C	Supply voltage (± 5 %)				± 15 24			V	
I c	Current consumption					$30(@\pm 24V)+I_{S} mA$			mΑ
\mathbf{V}_{d}	R.m.s. voltage f	or AC isolation te	st, 50	Hz, 1 r	mn	12 ²⁾			kV
-						1.5 3)			kV
$\mathbf{V}_{_{\mathrm{e}}}$	R.m.s. voltage for	or partial discharg	e extir	ction	@ 10 pC	4.1			kV

Accuracy - Dynamic performance data

\mathbf{e}_{L}^{G}	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity error		± 0.5 < 0.1		% %
I _o	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C - 50°C + 85°C	Typ ± 0.2	Max ± 0.4 ± 0.5 ± 0.8	mA mA mA
t _r di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

	eneral data			
T _A	Ambient operating temperature		- 40 (-50) +	85 °C
T _s	Ambient storage temperature		- 50 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70$ °C	40	Ω
		$T_A = 85^{\circ}C$	42	Ω
m	Mass		700	g
	Standards		EN 50155	

Notes: ¹⁾ I_{P max} @ +85°C & customer measuring resistance. ²⁾ Between primary and secondary + internal shield + screened cable. ³⁾ Between secondary and internal shield + screened cable. ⁴⁾ With a di/dt of 100 A/µs.

Features

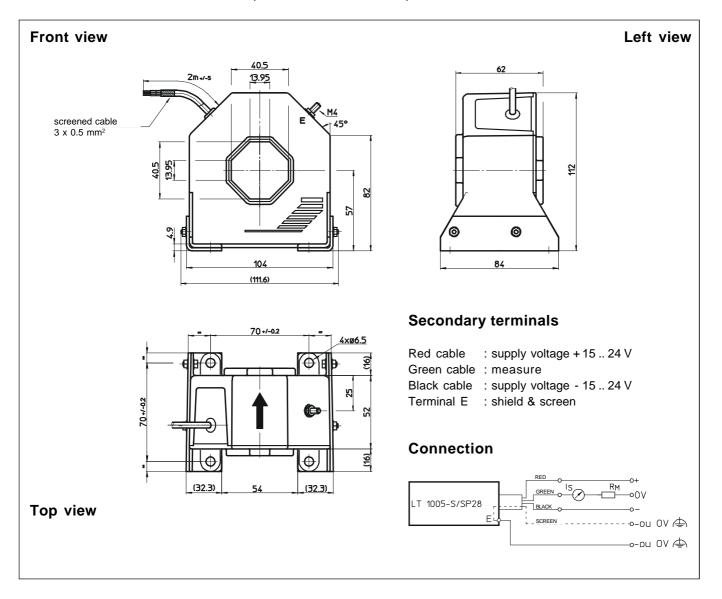
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 2400 A$
- $V_c = \pm 15 ... 24 \ V (\pm 5 \%)$
- **V**_d = 12 kV
- $T_{\Delta} = -40^{\circ}\text{C} (-50^{\circ}\text{C}) ... + 85^{\circ}\text{C}$
- Secondary connection on screened cable 3 x 0.5 mm²
- Shield between primary and secondary connected to the cable screening
- Railway equipment
- Customer marking
- Reinforced mounting feet.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060519/3

Dimensions LT 1005-S/SP28 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

Primary through-hole

Connection of secondary

 Connection to terminal E Fastening torque ± 0.5 mm

4 holes \varnothing 6.5 mm

40.5 x 40.5 mm

screened cable 3 x $0.5\ mm^2$

M4 threaded stud

1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.